

Concours d'accès en première année Programme Grande Ecole Session de Septembre 2011 (15/09/2011) Epreuve de Mathématiques Générales Durée : 2 heures

Exercice 1 (3 points)

On considère le polynôme P défini par : $P(x) = x^3 - 2x^2 - 9x + 18$

- 1) Calculer P(2)
- 2) Factoriser P(x).
- 3) Résoudre P(x) > 0

Exercice 2 (2 points)

Pour classer des photos, un magasin propose 2 types de rangements : des albums ou des boîtes. Mostafa achète 6 boîtes et 5 albums et paie 57 dhs. Amine achète 3 boites et 7 albums et paie 55,5 dhs. Calculer les prix d'une boîte et d'un album.

Exercice 3 (2 points)

Le prix d'un article a augmenté de 10% entre les années 2000 et 2001, il a diminué de 15% entre 2001 et 2002 et ensuite il a augmenté de 20% entre 2002 et 2003. De combien le prix de cet article a augmenté entre 2000 et 2003 (en %) ?

Problème (8 points)

Partie A

Soit la fonction g de la variable réelle x définie pour tout x > 0 par : $g(x) = x^2 + 6 - 4 \ln(x)$

- 1. Calculer $g(\sqrt{2})$.
- 2. Donner le tableau de variation de g. En déduire le signe de g sur l'intervalle $]0;+\infty[$

N.B.: On ne demande ni les limites aux bornes ni de tracer la courbe; ln(2) = 0,69

Partie B

Soit f définie par $f(x) = \frac{x}{4} - \frac{1}{2x} + \frac{\ln(x)}{x}$ pour tout x > 0 et C_f sa courbe représentative.

- 1. Etudier les limites de f en 0 et en $+\infty$
- 2. Vérifier que $f'(x) = \frac{g(x)}{4x^2}$
- 3. En déduire le sens de variation de f
- 4. Montrer que l'équation f(x) = 0 admet une solution sur l'intervalle]1;2[
- 5. Montrer que la droite D d'équation $y = \frac{x}{4}$ est asymptote à la courbe C_f
- 6. Etudier la position de C_f par rapport à D
- 7. Tracer dans un même repère orthonormé la courbe C_f et la droite D.

On donne: $\sqrt{e} = 1,64$ $\lim_{x \to +\infty} \left(\frac{\ln(x)}{x} \right) = 0$

Questionnaire (5 points; ½ par question)

Ce questionnaire comprend 10 questions à choix multiples ayant chacune 5 propositions de réponse dont une seule est juste. <u>Entourez la bonne réponse, mettez votre numéro d'examen en haut de cette feuille et joignez celle-ci à votre copie d'examen.</u>

1. Soit $f(x) = (1 - a^2)x + 4$; a étant un paramètre réel. Les valeurs de a pour lesquelles f est une fonction constante sont :

Réponse a	Réponse b	Réponse c	Réponse d	Réponse e
0 et 1	1 et 2	-1 et 1	-1 et 0	-1 et 2

2. L'équation d'une droite parallèle à l'axe des abscisses est :

Réponse a	Réponse b	Réponse c	Réponse d	Réponse e
x = 1	y = k	$\mathbf{x} = \mathbf{k}$	y = x	$\mathbf{x} = 0$

3. Sachant que la $\lim(\frac{\ln(x)}{x})$ quand x tend vers $+\infty$ est égale à 0, quelle est la limite de la fonction $x^2 - \ln(x)$ quand x tend vers $+\infty$:

Réponse a	Réponse b	Réponse c	Réponse d	Réponse e
-∞	0	+∞	1	2

4. On considère la suite arithmétique $(U_n)_{n \in \mathbb{N}}$ telle que $U_0 = 0$ et $U_5 = 20$, la raison r de cette suite est :

Réponse a	Réponse b	Réponse c	Réponse d	Réponse e
-4	-2	2	4	5

5. Considérons l'équation $x^2 + 3x - 4 = 0$. Le nombre de solutions de cette équation est :

Réponse a	Réponse b	Réponse c	Réponse d	Réponse e
0	1	2	3	4

6. On considère la suite géométrique $(U_n)_{n \in \mathbb{N}}$ telle que $U_0 = 3$ et $U_3 = 81$, la raison q de cette suite est :

Réponse a	Réponse b	Réponse c	Réponse d	Réponse e
-3	1	2	3	4

7. La courbe de la fonction f définie par $f(x) = \frac{x}{x^2 + 1}$ est symétrique par rapport à :

Réponse a	Réponse b	Réponse c	Réponse d	Réponse e
le point (0,0)	l'axe x'Ox	l'axe y'Oy	le point (1/2,3/2)	le point (2,2/3)

8. L'équation $ln(e^x) = 3$ a pour solution:

Réponse a	Réponse b	Réponse c	Réponse d	Réponse e
0	1	2	3	Pas de solution

9. Le domaine de définition de la fonction f définie par $f(x) = \frac{x}{3x-1}$ est :

Réponse a	Réponse b	Réponse c	Réponse d	Réponse e
$IR - \{1/3\}$]-∞;-1]U[1;+∞[IR	IR *	ϕ

10. Quelle valeur peut-on donner au réel a pour que les polynômes $P(x) = 2x^2 - 3x + 1$ et Q(x) = (x-1)(ax-1) soient égaux ?

Réponse a	Réponse b	Réponse c	Réponse d	Réponse e
2	1	-1	Aucune	1/2