(C_1) طبيعة حركة ا(1-1/1)

من خلال التسجيل ، نلاحظ ان المسار مستقيمي وان المسافات المقطوعة ، خلال نفس المدد الزمنية المتتالية، متساوية وبالتالي فإن حركة (C_1) مستقيمية منتظمة

1-2 نص مبدا القصور:

عندما يكون جسم صلُّب معزولا ميكانيكيا (او شبه معزول) في معلم مرتبط بالارض فإن متجهة سرعة مرکز قصوره $\overrightarrow{V}_G = \overrightarrow{cte}$ ثابتهٔ مرکز قصوره

1-3 تحديد مجموع متجهات القوى:

بما ان حركة (C_1) مستقيمية منتظمة أي $\overrightarrow{V}_G = \overline{cte}$ وحسب مبدا القصور فإن مجموع متجهات القوى $\Sigma \vec{F} = \vec{0}$ المطبقة على (C_1) منعدم أي

: تحديد سرعة (C_2) بعد التصادم 1-2/2

- عمية حركة المجموعة (C_1,C_2) قبل التصادم هي $\vec{P}=\vec{P}_1+\vec{P}_2$ ولدينا الكن إذن $\vec{P}=\vec{P}_1+\vec{P}_2$ $\overrightarrow{P} = m_1 \cdot \overrightarrow{v}_1$ ومنه $\overrightarrow{P}_2 = \overrightarrow{0}$
 - $\overrightarrow{P'} = \overrightarrow{P'}_1 + \overrightarrow{P'}_2$: مية حركة المجموعة (C_1, C_2) بعد التصادم

 $\overrightarrow{P}' = (m_1 + m_2)\overrightarrow{v}$: بعد التصادم يبقى (C_1) و (C_1) ملتصقين لهما نفس السرعة \overrightarrow{v} وبالتالي نكتب وبما ان المجموعة شبه معزولة ، فحسب قانون انحفاظ كمية الحركة

 $(m_1+m_2)\vec{v}=m_1.\vec{v}_1$ نکتب $\vec{P}'=\vec{P}$ أي

$$v = \frac{m_1}{m_1 + m_2} v_1$$
 ومنه $\vec{v} = \frac{m_1}{m_1 + m_2} \vec{v}_1$ ومنه $\vec{v} = \frac{m_1}{m_1 + m_2} \vec{v}_1$

$$v_1 = 0,45 \text{m.s}^{-1}$$
 $v_1 = \frac{M_0 M_1}{\tau} = \frac{M_1 M_2}{\tau} = \dots = \frac{1.8.10^{-2}}{40.10^{-3}}$

$$v=0,3m.s^{-1}$$
 ومنه $v=\frac{200}{200+100}\times 0,45$ أي $v=\frac{200}{200+100}\times 0,45$ اذن سرعة (C_2) بعد التصادم هي : $\overrightarrow{\Delta p}_1=m_1(\overrightarrow{v}-\overrightarrow{v}_1)$ أي $\overrightarrow{\Delta p}_1=\overrightarrow{p'}_1-\overrightarrow{p}_1$ نعلم أن : $\|\overrightarrow{v}\| \langle \|\overrightarrow{v}_1\| \|$

$$\overrightarrow{\Delta p}_1 = m_1(\overrightarrow{v} - \overrightarrow{v}_1)$$
 اُي $\overrightarrow{\Delta p}_1 = \overrightarrow{p}'_1 - \overrightarrow{p}_1$: لدينا *

 $\|\vec{v}\|\langle\|\vec{v}_1\|$: نعلم أن

 $\overrightarrow{\Delta p}_1$ اذن ممیزات ممیزات

- المنحى : عكس منحى الحركة - الاتجاه : اتجاه الحركة

$$\left\| \overrightarrow{\Delta p}_1 \right\| = m_1 \left| v - v_1 \right|$$
 : Ihaid

$$\left\| \overrightarrow{\Delta p}_1 \right\| = 0,03 kg.m.s^{-1}$$
 if

$$\overrightarrow{\Delta p}_2 = m_2(\overrightarrow{v} - \overrightarrow{v}_2)$$
: Levi *

وبماأن $\vec{v}_2 = \vec{0}$ لأن (C_2) كان ساكنا قبل التصادم

: فإن $\overrightarrow{\Delta p}_2 = m_2 \vec{v}$ ومنه فإن

- المنحى: منحى الحركة

- الاتجاه: اتجاه الحركة

- المنظم : $|\overline{\Delta p}_2| = m_2.v$ أي $|\overline{\Delta p}_2| = 0.03 kg.m.s^{-1}$ المنظم ومنحيان $|\overline{\Delta p}_2| = m_2.v$ المنظم ومنحيان عبير كمية الحركة $|\overline{\Delta p}_2| = \overline{\Delta p}_1$ نفس الاتجاه ونفس المنظم ومنحيان متعاكسان فإن $|\overline{\Delta p}_2| = \overline{\Delta p}_1$ الشيء الذي يدل على أن هناك تبادل كمية الحركة بين الخيالين $|\overline{\Delta p}_2| = \overline{\Delta p}_1$ اثناء التصادم.

