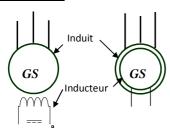
Pour plus des cours, exercices, examens ... Site 9alami.com

N.L.T.Mohammedia


FONCTION CONVERTIR: MACHINES SYNCHRONES

2STE 2012/13

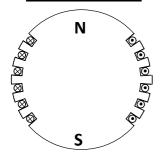
La machine synchrone est un convertisseur réversible. Elle peut fonctionner soit en génératrice soit en moteur. Lorsqu'elle fonctionne en génératrice, la machine synchrone prend le nom d'alternateur

I. Alternateur triphasé

1. Symbole normalisé

2. Organisation simplifiée de l'alternateur

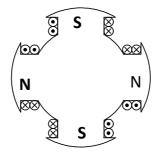
L'alternateur comprend deux parties principales : l'inducteur et l'induit


L'inducteur

Il a pour rôle de créer un champ magnétique tournant à l'aide d'un rotor magnétisant mis en rotation.

L'inducteur comporte 2.p pôles (p : paires de pôles).

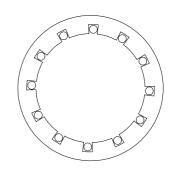
Il existe 2 types d'inducteurs :


Rotor à pôles lisses

Rotor à pôles lisses p = 1

Très robuste, il permet d'obtenir des fréquences de rotation élevées (> 3000 tr/min). Il est utilisé dans les centrales thermiques et les centrales nucléaires.

Rotor à pôles saillants



Rotor à pôles saillants p = 2

Tournant moins vite, et de ce fait fournissant moins de puissance, il est utilisé dans les centrales hydrauliques et les groupes électrogènes

L'induit,

Constitué de trois groupes de conducteurs logés dans des encoches formant trois circuits (un pour chaque phase) décalés les uns des autres d'un angle convenable (120°) et fournissant de ce fait des courants triphasés.

3. Caractéristiques de l'alternateur

3.1. Fréquence des f.é.m. induites

Les enroulements de l'induit sont soumis à un champ magnétique tournant à la fréquence n dite fréquence de synchronisme.

Il apparaît donc aux bornes des enroulements de l'induit des f.é.m. induites de fréquence f telles que :

f = p.n

avec

p : nombre de paires de pôles

n : fréquence de rotation du champ tournant

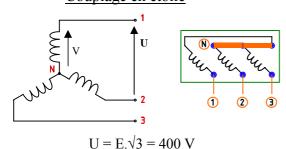
f: fréquence des f.é.m. induites

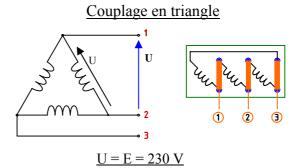
3.2. Valeur efficace de la f.é.m. induite par un enroulement

Chaque enroulement génère une f.é.m. induite $e = - d\Phi / dt$, dont la valeur efficace s'exprime :

 $E = K.p.n.N.\Phi_{max} = K.f.N.\Phi_{max}$

K : coefficient de Kapp qui ne dépend que des caractéristiques technologiques de l'alternateur.


N : nombre de conducteurs actifs par enroulement


 Φ : flux utile maximal sous un pôle

3.3. Couplage des alternateurs triphasés

La f.é.m. induite définie précédemment est générée par chacun des enroulements. La formule précédente donne donc la valeur efficace d'une tension simple si les enroulements sont couplés en étoile, et la valeur d'une tension composée s'ils sont couplés en triangle.

Exemple: A vide, si E = 230 VCouplage en étoile

3.4. Excitation des alternateurs

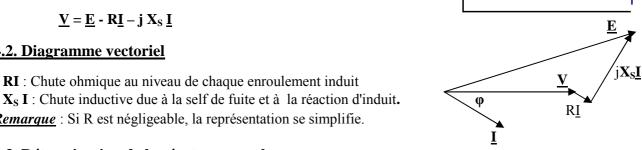
Lorsque l'alternateur est à aimants permanents, il n'a pas besoin d'être excité.

Lorsque l'inducteur est constitué d'électro-aimants, ils doivent être traversés par des courants continus fourni par:

- une source extérieure reliée au rotor par un système de bagues et de balais.
- l'induit lui-même : une partie des courants triphasés fournis par l'induit sont redressés à l'aide d'un pont de diodes afin de pouvoir alimenter directement l'inducteur : l'alternateur est alors dit auto excité

4. Fonctionnement en charge

4.1. Modélisation d'une phase de l'alternateur


Pour étudier l'alternateur triphasé, on modélise une phase de l'alternateur par une f.e.m. E en série avec une résistance R et une réactance synchrone X_S

$$\underline{\mathbf{V}} = \underline{\mathbf{E}} - \mathbf{R}\underline{\mathbf{I}} - \mathbf{j} \mathbf{X}_{\mathbf{S}} \underline{\mathbf{I}}$$

4.2. Diagramme vectoriel

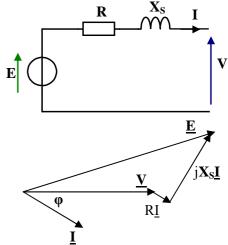
RI: Chute ohmique au niveau de chaque enroulement induit

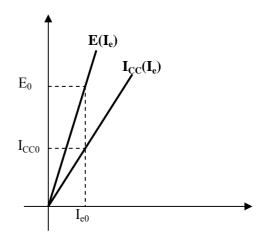
Remarque: Si R est négligeable, la représentation se simplifie.

4.3. Détermination de la réactance synchrone

On peut facilement déterminer les éléments du modèle électrique équivalent, à l'aide de deux essais :

- essai à vide $\mathbf{E} = \mathbf{f}(\mathbf{I}_{\mathbf{e}})$
- essai en court-circuit $I_{CC} = f(I_e)$


On a alors les deux caractéristiques $I_{CC} = f(I_e)$ et $E = f(I_e)$.


Pour un courant d'excitation donné I_{e0} (zone linéaire), on connaît donc : I_{CC0} et E_0 , on en déduit X_S .

$$Z = E_0 / I_{CC0}$$
 et $X_S = \sqrt{Z^2 - R^2}$

La réactance est généralement très grande devant la résistance d'un enroulement, d'où:

$$\mathbf{Z} = \mathbf{E}_0 / \mathbf{I}_{\mathbf{CC0}} \approx \mathbf{X}_{\mathbf{S}}$$

4.4. Bilan des puissances. Rendement.

Puissance reçue. Puissance restituée :

L'alternateur reçoit une puissance mécanique P_M qui lui est fournie par le moteur d'entraînement

$$P_M = C_M \Omega$$

Il restitue une partie de cette puissance sous la forme de puissance électrique P qui est reçue par la charge :

$$P = \sqrt{3} U I \cos \varphi$$

Bilan des pertes de puissance :

Pertes ne dépendant pas de la charge appelées pertes « constantes » :

Les pertes mécaniques $\mathbf{p_m}$ dépendent de la fréquence de rotation; les pertes $\mathbf{p_f}$ dans le fer dépendent de la fréquence et du flux dans la machine. Pour une machine synchrone utilisée à fréquence et tension constantes, elles varient peu entre le fonctionnement à vide et le fonctionnement à pleine charge. On les considère donc comme constantes.

Pertes par effet Joule:

• Dans l'inducteur : la puissance perdue par effet Joule est égale à : $\mathbf{p_{je}} = \mathbf{U_e} \, \mathbf{I_e}$. Avec $\mathbf{U_e}$: la tension continue aux bornes de l'inducteur;

I_e: l'intensité du courant d'excitation.

• Dans l'induit : la puissance $\mathbf{p_{js}}$ perdue par effet Joule est égale à : $\mathbf{p_{js}} = \frac{3}{2}$. R I² Avec R la résistance mesurée entre deux bornes de phase de la machine

Expression du rendement :

• Si l'alternateur est auto-excité, c'est-à-dire s'il ne reçoit de puissance que du moteur qui l'entraîne, le rendement est alors égal à :

 $\eta = \frac{\sqrt{3 \text{ U I cos } \varphi}}{C_{\text{M}} \Omega}$

• Si l'alternateur n'est pas auto-excité, il faut ajouter à la puissance mécanique reçue, la puissance $\mathbf{p_{je}}$ qui a été fournie au circuit d'excitation.

Dans le cas général, nous pouvons aussi exprimer le rendement en fonction des différentes pertes de puissance :

$$\eta = \frac{\sqrt{3 \text{ U I cos } \varphi}}{\sqrt{3 \text{ U I cos } \varphi + p_m + p_f + p_{ie} + p_{is}}}$$

II. Moteur synchrone. Réversibilité de l'alternateur

- Expérience : couplons un alternateur triphasé sur le réseau, puis supprimons l'alimentation du moteur.
- Constatation : le groupe continue toujours à tourner, l'alternateur est converti en moteur.
- Déduction : puisque le moteur tourne à la vitesse de synchronisme $\mathbf{n} = \mathbf{f/p}$, on l'appelle *moteur synchrone*.

1. Fonctionnement : Couple moteur

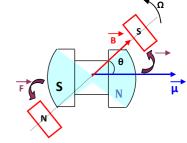
La rotation du système est assurée par le couple : $C = \mu \cdot B$

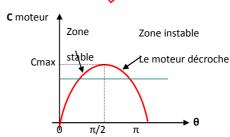
μ: moment magnétique du rotor

• **B** : champ magnétique du stator

Soit en module : $C_{em} = \mu .B .sin \theta$

L'évolution du couple en fonction de θ

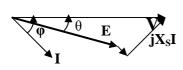

• Si $\theta = 0 \rightarrow C = 0 \rightarrow$ moteur est en arrêt

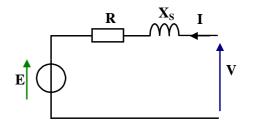

■ Si $0 < \theta < \pi/2$ → C est croissant

→ moteur en marche (fonctionnement statique stable).

• Si $\pi/2 < \theta < \pi$ • C est décroissant

→ moteur décroche.




2STE 2012/13

2. Schéma équivalent. Equation .Diagramme

Equations : $\underline{\mathbf{E}} = \underline{\mathbf{V}} - \mathbf{R} \cdot \underline{\mathbf{I}} - \mathbf{j} \mathbf{X}_{s} \cdot \mathbf{I}$ soit $\underline{\mathbf{V}} = \underline{\mathbf{E}} + \mathbf{R} \cdot \underline{\mathbf{I}} + \mathbf{j} \mathbf{X}_{s} \cdot \underline{\mathbf{I}}$

<u>I est en arriè**R** sur V</u>

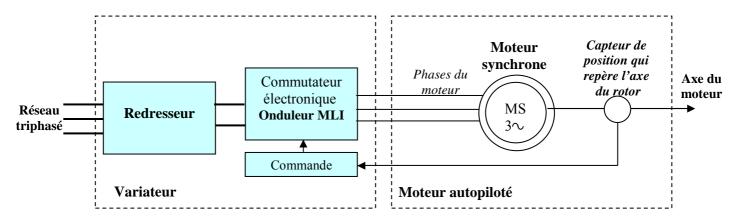
3. Avantages

La machine synchrone est plus facile à réaliser et plus robuste que le moteur à courant continu. Son rendement est proche de 99%.

On peut régler son facteur de puissance $\cos \varphi$ en modifiant le courant d'excitation Ie.

4. Inconvénients

Un moteur auxiliaire de démarrage est souvent nécessaire.


Il faut une excitation, c'est-à-dire une deuxième source d'énergie.

Si le couple résistant dépasse une certaine limite, le moteur décroche et s'arrête.

III. Moteur synchrone autopiloté

Les moteurs synchrones autopilotés sont aussi appelés moteurs autosynchrones.

Schéma de principe

Le capteur (codeur ou resolver) détecte la position exacte du rotor et permet à l'onduleur (convertisseur de fréquence), de maintenir un angle θ de 90° entre le champ tournant statorique \mathbf{B} et le champ rotorique μ , de façon à ce que le couple moteur puisse toujours être maximal. Il n'y a plus possibilité de décrochage. Le capteur donne également l'information " vitesse ".