Représentations.

Définitions

Pour une tension

 $u = u(t) = \hat{U}.\sin(\omega t + \varphi u)$

 $u = U\sqrt{2} \sin(\omega t + \omega u)$.

ou pour un courant

 $i=i(t) = \hat{I}.\sin(\omega t + \varphi i)$

 $i = I\sqrt{2} \sin(\omega t + \varphi i)$.

u, i sont les valeurs instantanées de la tension et du courant.

 \hat{U}, \hat{I} sont les valeurs maximales ou amplitudes de u et i.

U, I sont les valeurs efficaces de u et i.

ω est la pulsation ou vitesse angulaire en rad/s

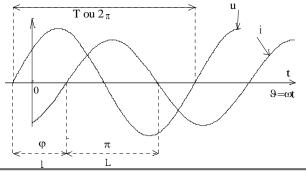
 $\omega = 2 \cdot \pi \cdot f = 2 \cdot \pi / T$ avec f = 1 / T: fréquence en Hertz (Hz)

et T période en seconde (s).

 $\omega t + \varphi_i$ ou $\omega t + \varphi_n$ est la phase à l'instant t exprimée en radian.

 ϕ_i , ϕ_u est la phase à l'origine (t=0).

Représentation instantanée



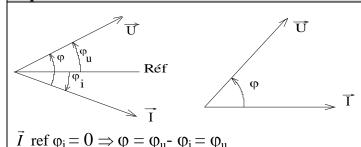
 $\phi = \phi_u \text{-} \phi_i = \textit{est le déphasage entre u et i ou différence de phases..}$

On mesure le déphasage à l'oscilloscope : règle de 3 :

$$\varphi_{(rad)} = 1.\pi/L$$

$$\varphi(^{\circ}) = 1.180 / L$$

Représentation vectorielle de Fresnel



$$i = \hat{I}.\sin(\omega t + \varphi_i) = I\sqrt{2}\sin(\omega t + \varphi_i)$$

 \vec{I} module I et phase $\omega t + \varphi_i = \varphi_i(t=0)$: $\vec{I}(\mathbf{I}, \varphi_i)$

Somme de grandeurs sinusoïdales : $u = u_1 + u_2$

$$\Rightarrow \vec{U} = \vec{U}_1 + \vec{U}_2$$
 ou $i = i_1 + i_2 \Rightarrow \vec{I} = \vec{I}_1 + \vec{I}_2$

Représentation complexe

Rappels sur les complexes.

Forme polaire Forme rectangulaire

 $\underline{\mathbf{Z}} = [\mathbf{Z}^\mathsf{T}; \boldsymbol{\theta}] = [\mathbf{a} + \mathbf{j}\mathbf{b}]$ où : \mathbf{Z} module, $\boldsymbol{\theta}$ argument, \mathbf{a} partie réelle, \mathbf{b} partie imaginaire

 $Z = [Z, \theta] = Z \cos \theta + j Z \sin \theta \text{ et } Z = a + jb = [\sqrt{a^2 + b^2}; \theta = \arctan(b/a)].$

Calculs:

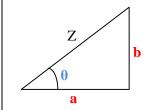
Addition: $\underline{Z} = \underline{Z}_1 + \underline{Z}_2 = (a_1 + a_2) + j(b_1 + b_2).$

Soustraction: $Z = Z_1 - Z_2 = (a_1 - a_2) + i (b_1 - b_2)$.

Multiplication: $\underline{Z} = \underline{Z_1} \cdot \underline{Z_2} = [Z_1 \cdot Z_2; \theta_1 + \theta_2] \quad \theta_1 \text{ et } \theta_2 \text{ arguments de } \underline{Z_1} \text{ et } \underline{Z_2}.$

Division: $\underline{\mathbf{Z}} = \underline{\mathbf{Z}}_1/\underline{\mathbf{Z}}_2 = [\mathbf{Z}_1/\mathbf{Z}_2; \theta_1 - \theta_2].$

Dérivée : $(Z)'=j\omega Z$.



Utilisation en électricité

$$\mathbf{u} = \mathbf{U}\sqrt{2}\sin(\omega t + \varphi \mathbf{u}) \Rightarrow \mathbf{U} = [\mathbf{U}; \varphi \mathbf{u}] \text{ et } \mathbf{i} \Rightarrow \mathbf{I} = [\mathbf{I}; \varphi \mathbf{i}]$$

Si i est la référence alors $\varphi i = 0$ et $\varphi u = \varphi \Rightarrow \underline{I} = [I; 0]$ et $\underline{U} = [U; \varphi]$

 $\underline{\mathbf{U}} = \mathbf{U}\cos\varphi + \mathbf{j}\mathbf{U}\sin\varphi = \mathbf{a} + \mathbf{j}\mathbf{b} = [\sqrt{a^2 + b^2}; \varphi = \operatorname{arctg}(\mathbf{b}/\mathbf{a})].$

Modèle équivalent d'un dipôle linéaire

Modèle série : Impédance

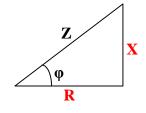
$$\underline{\mathbf{Z}} = \underline{\mathbf{U}}/\underline{\mathbf{I}} = \mathbf{R} + \mathbf{j}\mathbf{X} = [\mathbf{Z}; \boldsymbol{\varphi}]$$

R: partie réelle de $\underline{Z} \rightarrow r\acute{e}sistance$ en ohm,

X: partie imaginaire de $\underline{Z} \rightarrow r\acute{e}actance$ en ohm,

 $Z = U/I = \sqrt{(R^2 + X^2)} \rightarrow Impédance en ohm$ et φ tel que $\tan \varphi = X/R$

 $\varphi = \varphi u - \varphi i = \arg \underline{U} - \arg \underline{I} = \arg \underline{Z} \quad (\varphi = (\vec{I}, \vec{U}) \text{ déphasage de i sur } u)$



Les Dipôles élémentaires	relation instantanée	Tension efficace	Déphasage φ	Tension complexe	Impédance complexe
Résistance R	$\mathbf{u} = \mathbf{R.i}$	U= R.I	0	<u>U</u> = R <u>.I</u>	$\underline{\mathbf{Z}}_{\mathbf{R}} = \mathbf{R}$
Inductance L	u = Ldi/dt	U= Lω.I	$\pi/2$	$\underline{\mathbf{U}} = \mathbf{j} \mathbf{L} \boldsymbol{\omega} \cdot \underline{\mathbf{I}}$	$\underline{\mathbf{Z}}_{L} = \mathbf{j} \mathbf{L} \boldsymbol{\omega}$
Condensateur C	u = Cdi/dt	U= I/Cω.	- π/2	<u>U</u> = - jI/Cω.	$\mathbf{Z}_{\mathbf{C}} = -\mathbf{j}/\mathbf{C}\boldsymbol{\omega}$

Groupement série

Groupement série	R, L	R, C	R, L, C
$\mathbf{Z} = \sum \mathbf{Z}_{\mathbf{i}}$	$\underline{\mathbf{Z}}_{\mathbf{RL}} = \mathbf{R} + \mathbf{j} \mathbf{L} \boldsymbol{\omega}$	$\underline{\mathbf{Z}}_{RC} = \mathbf{R} - \mathbf{j}/\mathbf{C}\boldsymbol{\omega}$	$\underline{\mathbf{Z}}_{RC} = \mathbf{R} + \mathbf{j}(\mathbf{L}\omega - 1/\mathbf{C}\omega)$

Remarque : X>0 φ >0 le dipôle est inductif et \tilde{I} est en retard par rapport à \tilde{U}

X<0 ϕ <0 le dipôle est *capacitif* et \vec{I} *est en avance par rapport* à \vec{U}

X=0 φ=0 le dipôle est *résistif* et \vec{l} est en phase avec \vec{U}

Modèle parallèle : Admittance

 $\underline{\mathbf{Y}} = 1/\underline{\mathbf{Z}} \implies \underline{\mathbf{I}} = \underline{\mathbf{Y}} \cdot \underline{\mathbf{U}}$

Les Dipôles élémentaires	La Résistance R	L'inductance L	Le condensateur C
Admittance	$\underline{\mathbf{Y}}_{\mathbf{R}} = 1/\mathbf{R}$	$\underline{\mathbf{Y}}_{L} = 1/\mathbf{j}\mathbf{L}\boldsymbol{\omega} = -\mathbf{j}/\mathbf{L}\boldsymbol{\omega}$	$\underline{\mathbf{Y}}_{c} = 1/\mathbf{-j}/\mathbf{C}\boldsymbol{\omega} = \mathbf{j}\mathbf{C}\boldsymbol{\omega}$

Groupement parallèle

 $\underline{\mathbf{Y}} = \underline{\mathbf{\Sigma}}\underline{\mathbf{Y}}_{i}$ cas de 2 dipôles $\underline{\mathbf{Y}} = \underline{\mathbf{Y}}_{1} + \underline{\mathbf{Y}}_{2}$ ou $\underline{\mathbf{Z}} = \underline{\mathbf{Z}}_{1}.\underline{\mathbf{Z}}_{2}/(\underline{\mathbf{Z}}_{1} + \underline{\mathbf{Z}}_{2})$

Puissances en alternatif. Théorème de Boucherot. Facteur de puissance

Puissances en alternatif

Les différentes	active (W)	réactive (VAR)	apparente (VA)	Relations Triangle des puissances	
puissances:	P =UI cos φ	$Q = UI \sin \varphi$.	S = UI		
Résistance R	$P = RI^2 = U^2/R$	Q = 0	S = P	$S = \sqrt{P^2 + Q^2}$ $Q = P. \tan \varphi$	SQ
Inductance L	P = 0	$Q = L\omega I^2$	S = Q		
Condensateur C	P = 0	$\mathbf{Q} = -\mathbf{U}^2 \mathbf{C} \mathbf{\omega}$	S = -Q		P

Théorème de Boucherot

Pour un ensemble de récepteurs : $P_t = \sum P_i$ et $Q_t = \sum Q_i$. (On présente les résultats dans un tableau et on calcul I_t et $\cos \varphi_{t:}$.)

$$tg\phi_t = Q_t/P_t \Rightarrow cos\phi_t \text{ et } I_t = P_t/U \cos\phi_t \text{ ou } \mathbf{S_t} = \sqrt{\mathbf{P_t}^2 + \mathbf{Q_t}^2} \Rightarrow I_t = S_t/U \text{ et } cos\phi_t = P_t/S_t.$$

Relèvement du facteur de puissance.

Pour diminuer le courant en ligne, on ajoute un condensateur en parallèle sur le récepteur.

$$Q' \downarrow \Rightarrow S' \downarrow \Rightarrow I'=S'/U \downarrow \text{ et } \cos\varphi' = P'/S' \downarrow (P'=P)$$

La puissance active reste inchangée car Pc=0.

$$Q' = Q + Qc < Q \quad car \quad Qc = -U^2C\omega < 0.$$

$$Q = Q + Qc \Rightarrow P'.tan\phi' = P.tan\phi - U^2C\omega$$

<u>Calcul de C</u>: $C = P(\tan \varphi - \tan \varphi') / U^2 \omega$

