تصحيح الإمتحان التجريبي - نيابة القنيطرة 2000

الشعبة : علو تجريبية الشعبة : المستوى :الأولى بكالوريا المادة : الرياضيات

$$D_F = \left] -\infty, -1 \left[\cup \right] -1, 1 \left[\cup \right] 1, +\infty \left[-\frac{1}{2} -1 \right]$$

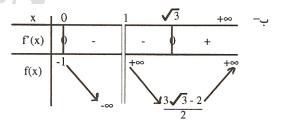
 $D_{\scriptscriptstyle F}$ ب – لیکن $_{
m X}$ عنصر ا من

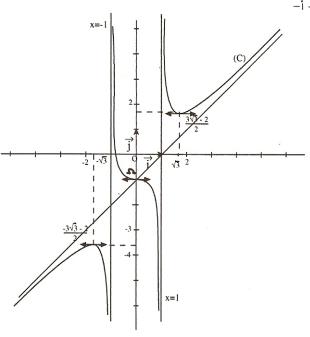
$$x-1+rac{x}{x^2-1}=rac{(x-1)ig(x^2-1ig)+x}{x^2-1}$$
 : الدينا
$$=rac{x^3-x-x^2+1+x}{x^2-1}=rac{x^3-x^2+1}{x^2-1}=f\left(x
ight)$$
 D_f نكل x من x من x من x السل x من x من x السل x من x السل x من x المنحنى x مندسيا أن المنحنى x المنحنى x مندسيا أن المنحنى x يقبل رأسيا معادلته x

$$\lim_{x \to +\infty} f(x) - (x-1) = 0$$
 و $\lim_{x \to +\infty} f(x) = +\infty$ $\lim_{x \to +\infty} f(x) = +\infty$

y=x-1 وهذا يعني هندسيا أن المنحنى $\left(\ell_f\right)$ يقبل بجوار $+\infty$ مقاربا مائلا معادلته

f'(x) -1-3





$$E\left[\frac{3\sqrt{3}-2}{2},+\infty\right]$$
 - ψ

التمرين2:

1-تمثيل بارامتري للمستقيم (AB) هو:

$$\begin{cases} x = -1 + 2t \\ y = t \\ z = -2 + 4t \end{cases} (t \in \mathbb{R})$$

2=0 تكافي (-1+2t)+2t-(-2+4t)+1=0 : عافي 2-0

إذن (AB) و (p) لا يشتركان في أي نقطة ُ وهذا يعني أن (AB) يوازي (P) قطعا.

وبما أن $\frac{1}{6} \neq \frac{4}{6}$ فإن $\overrightarrow{AC}(2,1,6)$ غير مستقيميتين $\overrightarrow{AB}(2,1,4)$ دينا: $\overrightarrow{AB}(2,1,4)$

وبالتالي فإن A و B و C غير مستقيمية.

 $C \in (P)$: د المتنتج أن $x_c + 2y_c - z_c + 1 + 0$ المتنتج أن *-

 $\overrightarrow{AB}(2,1,4)$ يمر من النقطة C(1,1,4) وموجه بالمتجهة (D) يمر من النقطة

إذن معادلتان ديكار تيتان له هما:

$$\frac{x-1}{2} + \frac{y-1}{1} + \frac{z-4}{4}$$

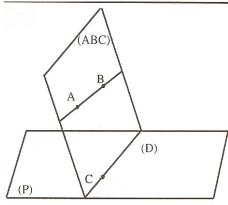
$$\begin{cases} x - 2y + 1 = 0 \\ 2x - z + 2 = 0 \end{cases}$$

 $(D)/\!/(P)$: بـلدينا: $(D)/\!/(AB)$ و $(D)/\!/(AB)$ إذن

وبما أن (D) يمر من C و C تنتمي إلى (P)

 $(D)\subset (P)$ فإن

ج-



لدينا: (D) يوازي (AB)

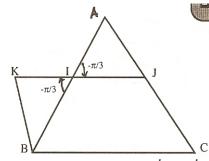
إذن (D) يوازي (ABC)

 $C \subset (ABC)$ فإن $C \in (ABC)$ و C فإن (D) وبما أن (D) وبما أن

ولدينا: $D \subset (P)$ غير منطبقين. ولدينا: $D \subset (P)$ غير منطبقين.

 $(P) \cap (ABC) = (D)$ فإن $(A \notin (P) \cap A \in (ABC)$ فإن $A \in (ABC)$

: 3 التمرين



$$R(B)=K$$
 و $R(A)=J$ نبین أن: 1

$$R:A o J$$
 :ب- لدينا

$$B \rightarrow K$$

AB=JK إذن

BC=jk : إذن AB=BC : ونعلم أن

$$\overrightarrow{AI} = \frac{1}{3}\overrightarrow{AB}$$
:ا- ادينا: 2

$$R:A \to J$$
 وبما أن:

$$I \rightarrow I$$

$$B \to K$$

فإن
$$\overrightarrow{JI} = \frac{1}{3} \overrightarrow{JK}$$
 فإن ألدوران يحافظ على معامل استقامية متجهتين)

ومنه فإن I و J مستقيمية

$$\overrightarrow{IJ} = \frac{1}{3}\overrightarrow{KJ}$$
 g

$$\overrightarrow{KJ} = 3\overrightarrow{IJ}$$
 : ب $-$ لدينا $=$ $3\left(\overrightarrow{IA} + \overrightarrow{AJ}\right)$ $=$ $3\left(\overrightarrow{IA} + \overrightarrow{AJ}\right)$ $=$ $3\left(-\frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}\right) = \overrightarrow{BA} + \overrightarrow{AC}$ $=$ \overrightarrow{BC} $=$ BCJK وهذا يعني أن BCJK متوازي الأضلاع