تصحيح الإمتحان التجريبي – نيابة الرباط 2000

الشعبة: علو تجريبية

المستوى : الأولى بكالوريا المادة : الرياضيات

$$D = \left] -\infty, 1\right[\cup \left] 1, +\infty \right[$$

$$\lim_{x \to -\infty} f(x) = -oo \qquad \lim_{x \to -\infty} f(x) = -oo \qquad \lim_{x \to 1^{-}} f(x) = +oo \qquad \lim_{x \to +oo} f(x) = +oo \qquad x \to +oo$$

$$\frac{x}{2} + \frac{3}{2} + \frac{2}{x-1} = \frac{x^2 - x + 3x - 3 + 4}{2(x-1)}$$

$$= \frac{x^2 + 2x + 1}{2(x - 1)} = \frac{(x + 1)^2}{2(x - 1)} = f(x)$$

 $-\infty$ و $\infty+$ و ر Δ) بجوار $\infty+$ و $\infty-$

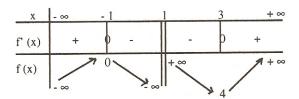
$$\lim f(x) - \left(\frac{x}{2} + \frac{3}{2}\right) = \lim \frac{2}{x-1}$$
 : $|x| \to +\infty$ $|x| \to +\infty$ $= 0$

$$|x| \to +\infty$$
 $|x| \to +\infty$

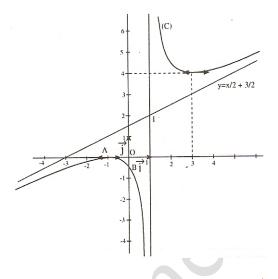
.D کا
$$f(x) - \left(\frac{x}{2} + \frac{3}{2}\right) = \frac{2}{x - 1}$$
 کا $f(x) - \left(\frac{x}{2} + \frac{3}{2}\right) = \frac{2}{x - 1}$

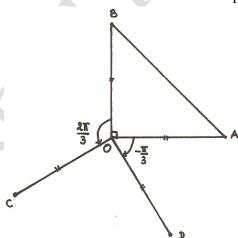
$$f(x) - \left(\frac{x}{2} + \frac{3}{2}\right)$$
نا کان $x \in]1, +\infty[$ اذا کان

. (Δ) وبالتالي فإن (C) يوجد تحت مقاربه المائل



.D کل
$$x$$
 کل $f(2-x) + f(x) = 4$ کل $A(-1,0)$ کا $A(-1,0)$





$$OA = OD$$
 إذن $r_1: A \rightarrow D$ -2

$$lackbrack OA = OB = OC = OD$$
 فإن $OB = OC$: ولدينا: $r_2 = B
ightarrow C$

(O مركزها (C مركزها (مركزها (مركزها (C + C) ومنه فإن النقط (مركزها (

$$\overline{\left(\overrightarrow{OA},\overrightarrow{OB}\right)} \equiv \frac{\pi}{2}$$
 و $OA = OB$: الدينا:

إذن : r(A)=B

$$(\overrightarrow{\overrightarrow{OC}}, \overrightarrow{\overrightarrow{OD}}) = (\overrightarrow{\overrightarrow{OC}}, \overrightarrow{\overrightarrow{OB}}) + (\overrightarrow{\overrightarrow{OB}}, \overrightarrow{\overrightarrow{OA}}) + (\overrightarrow{\overrightarrow{OA}}, \overrightarrow{\overrightarrow{OD}}) 2\pi$$

$$0 \longrightarrow (\overrightarrow{\overrightarrow{OC}}, \overrightarrow{\overrightarrow{OD}}) = (\overrightarrow{\overrightarrow{OC}}, \overrightarrow{\overrightarrow{OB}}) + (\overrightarrow{\overrightarrow{OA}}, \overrightarrow{\overrightarrow{OD}}) 2\pi$$

$$\equiv \left(-\frac{2\pi}{3}\right) + \left(\frac{-\pi}{2}\right) + \left(-\frac{\pi}{3}\right) \left[2\pi\right]$$

$$\equiv \frac{-3\pi}{2} [2\pi]$$

r(C)=D وبالتالي فإن $r:A \rightarrow B$: ج- لدينا $C \rightarrow D$

$$(\overrightarrow{\overline{AB}}, \overrightarrow{\overline{BD}}) \equiv \frac{\pi}{2} [2\pi]$$
 AC=BD $|\overrightarrow{AB}|$

أي AC=AD و
$$(AC) \perp (BD)$$
 و AC=AD و $r:[AC] \rightarrow [BD]$ د - لدينا: $r(I) = J$ استنتج أن: $\sigma(I) = J$ ومنه OI=OJ $\sigma(I) = J$ وهذا يعني أن المثلث OIJ متساوي الساقين وقائم الزاوية في O

2 – المستوى (p) هو : المستوى المحدد بالنقطة

 \vec{u} و بالمتجهتين \vec{u} و A

7x - 6y + z - 8 = 0 :

نبين إذن أن معادلة ديكارتية للمستوى (P)