الإمتحان التجريبي - نيابة سطات 2000 الشعبة: علو تجريبية

المستوى :الأولى بكالوريا المادة : الرياضيات

يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة

التمرين 1:

نعتبر الدالة العددية f للمتغير الحقبقي x المعرفة على \mathbb{R}^* بما يلى : $f(x) = x - 1 - \frac{1}{x} + \frac{1}{x^2}$

. (o, \vec{i}, \vec{j}) يرمز للمنحنى الممثل للدالة f في معلم متعامد ممنظم $\left(\ell_{\,f}
ight)$

(ن 0،5).
$$\mathbb{R}^*$$
 من أن $f(x) = (x - \frac{1}{x})(1 - \frac{1}{x})$ الكل $(x - \frac{1}{x})(1 - \frac{1}{x})$ الكل عن الم

ب – حدد أفصول كل نقطة من نقطتي تقاطع ℓ_f ومحور الأفاصيل. ℓ_f

ج- احسب نهایات f عند محدات مجموعة تعریفها. (1,5 ن)

$$(0.1,5)$$
 : راد ال (0.1) . \mathbb{R}^* من (0.1) کیل (0.1)

ب- أعط جدول تغيرات الدالة f . ($\omega 1$ ن) g 1- ادرس الفروع اللانهائية للمنحنى (ℓ_f) g 1- ادرس الفروع اللانهائية المنحنى (ℓ_f)

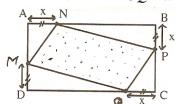
(ن 0,5).y=x-1 المعرف بالمعادلة (ℓ_f) والمستقيم ((Δ) المعرف بالمعادلة (ℓ_f) المنحنى

$$(0.1).(\ell_f)$$
 ج- أثبت أن النقطة التي أفصولها 3 هي نقطة انعطاف للمنحنى $(0.1).(\ell_f)$. ($(0.1).(\ell_f)$) . $(0.1).(\ell_f)$ عدد حلول المعادلة $(0.1).(\ell_f)$. $($

التمرين 2: 4 نقط ونصف

التمرين 2: 4 نقط و نصف (
$$o, \vec{i}, \vec{j}, \vec{k}$$
) الفضاء ℓ منسوب إلى معلم (d) المعرف بالمعادلة d 0 المعرف بالمعادلة (d 0) المعادلة (d 0) المعادل

1- بين أن المستقيم (D) يوازي قطعا المستوى (P). (1ن)


2- ليكن (Δ) المستقيم المعرف بمعادلتيه الديكار تيتين.

(ن 1) .1(0,2,-1) بين أن المستقيمين (D) و (D) بين أن المستقيمين أن المستقيمين (D) .
$$x = \frac{y-2}{2} = z+1$$

(1,5). (Δ) و (D) الذي يتضمن المستقيمين (Q) و (3,5). ب- بين أن المستويين (P) و(Q) متقاطعان . (1ن)

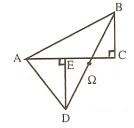
التمرين 3 : 3 .5 نقط

ليكن ABCD مستطيلا بحيث 5=AB و 5 =ABCD و $Q \in [DC]$ و $P \in [BC]$ و $N \in [AB]$ و $M \in [AD]$ و MNPQ نعتبر الرباعي ر انظر الشكل) $0 \le x \le 3$ حيث DM = AN = BP = CQ = x

(ن 1,25) $2x^2 - 8x + 15$ هي: MNPQ مسلحة الرباعي 1,25 (1,25 هـ) $g(x) = 2x^2 - 8x + 15$ بما يلي: $g(x) = 2x^2 - 8x + 15$ بما يلي: $g(x) = 2x^2 - 8x + 15$ بما يلي: $g(x) = 2x^2 - 8x + 15$ ب- استنتج قيمة x التي تكون من أجلها مساحة الرباعي MNPQ دنوية. (1ن)

التمرين 4:

نعتبر الشكل أسفله بحيث: ABC مثلث قائم الزاوية في C و DEA مثلث قائم الزاوية في DEA


 $\overset{\text{T}}{AE} = BC$ \bullet AC = DE

1- أثبت أن المثلث DAB متساوي الساقين وقائم الزاوية في A. (1 ن)

2- نعتبر الدوران R الذي يحول B إلى A ويحول A إلى D.

(ن المركز Ω للدوران R هو منتصف Ω الدوران Ω

(1) متساوى الساقين وقائم الزاوية في Ω متساوى الساقين وقائم الزاوية في Ω

