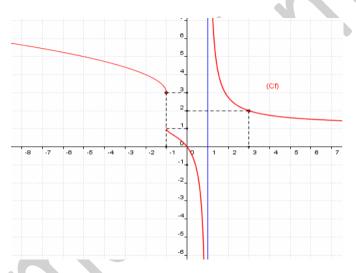
# انصال دالة عددية

# I. الاتصال في نقطة - الاتصال على مجال

# 1) الإتصال في نقطة

a) نشاط

: ليكن  $C_f$  منحنى دالة عددية f في الشكل التالي



- 3 عند النقطة ذات الأفصول  $C_f$  عند النقطة ذات الأفصول  $C_f$  عند النقطة ذات الأفصول .i
  - ان. أ-أحسب f(x) و  $\lim_{x\to 3} f(x)$  ماذا تلاحظ؟

ب- أحسبf(-1) وأحسب نهاية f عند f ماذا تستنتج؟

#### <u>تصحيح النشاط</u>

- ن خلال الشكل نلاحظ أن المنحنى  $C_f$  متقطع عند النقطة ذات الأفصول 1 ومتصل عند النقطة ذات الأفصول 3
  - $\lim_{x\to 3} f(x) = f(3)$  نلاحظ أن  $\lim_{x\to 3} f(x) = 2$  و  $\lim_{x\to 3} f(x) = 2$  .ii لذا نقول أن الدالة f(x) = 2 متصلة في 3.

$$\lim_{x \to -1^-} f(x) = 3$$
 و  $\lim_{x \to -1^+} f(x) = 1$  و  $\lim_{x \to -1^+} f(x) = 3$  و  $\lim_{x \to -1^+} f(x) = 3$  و  $\lim_{x \to -1^-} f(x) = 3$  و  $\lim_{x \to -1^-} f(x) = 3$  و  $\lim_{x \to -1^+} f(x) = 3$ 

. -1 نقول أن 
$$f$$
 غير متصلة في المتحدد . -1 نقول أن أن أغير متصلة في المتحدد أن المتحدد

نقول أن غير 
$$f$$
 متصلة على اليمين في 1-.  $\lim_{x \to -1^+} f(x) \neq f(-1)$ 

.-1 نقول أن متصلة على اليسار في ا
$$\lim_{x \to -1^-} f(x) = f(-1)$$

#### b) تعریف

: لتكن f متصلة في النقطة  $x_0$  إذا وفقط إذا كان  $x_0$  عنصر من f متصلة في النقطة  $x_0$  إذا وفقط إذا كان

$$\lim_{x \to x_0} f(x) = f(x_0)$$

#### مثال

: نعتبر الدالة العددية f المعرفة بما يلي

.1 انبین أن 
$$f$$
 متصلة في 1  $f(x) = \frac{2x^2 - 2}{x - 1}$  ;  $x \neq 1$   $f(1) = 4$ 

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{2x^2 - 2}{x - 1}$$

$$= \lim_{x \to 1} \frac{2(x^2 - 1)}{x - 1}$$

$$= \lim_{x \to 1} \frac{2(x^2 - 1)}{x - 1}$$

$$= \lim_{x \to 1} \frac{2(x - 1)(x + 1)}{x - 1}$$

$$= \lim_{x \to 1} 2(x + 1)$$

# c) الاتصال على اليمين -الاتصال على اليسار تعريف

لتكن f دالة عددية معرفة على مجال من نوع  $\int x_0, x_0 + \alpha [x_0, x_0 + \alpha]$  حيث  $\int x_0 dx$  متصلة على اليمين في  $\lim_{x \to x_0^+} f(x) = f(x_0)$  إذا وفقط إذا كان:

لتكن f دالة عددية معرفة على مجال من نوع  $\left[x_0-\alpha,x_0\right]$  حيث  $x_0=0$  تكون  $x_0=0$  متصلة على اليسار في  $x_0=0$  دالة عددية معرفة على مجال من نوع  $x_0=0$  اليسار في  $x_0=0$  دالة عددية معرفة على اليسار في  $x_0=0$  دالة عددية معرفة على اليسار في اليس

#### خاصية

لتكن f دالة عددية معرفة على مجال مفتوح I و  $x_0$  عنصر من f متصلة في النقطة  $x_0$  إذا وفقط إذا  $x_0$  كانت  $x_0$  متصلة على اليمين وعلى اليسار في  $x_0$  .

## d) تطبیق

$$f(x) = \frac{-x^2 - x + 6}{x^2 + 2x - 8}$$
 لتكن  $f(x)$  دالة عددية بحيث (1

 $D_f$  عند محدات الهايات  $D_f$  عند محدات الهايات اله

.2 في 
$$g$$
 أدرس اتصال  $g(x) = 2x + 1; x > 2$   $g(x) = x^2 - 1; x \le 2$ 

# تصحيح التطبيق

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \frac{-(x-2)(x+3)}{(x-2)(x+4)}$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \frac{-(x+3)}{(x+4)}$$

$$\lim_{x \to 2^{-}} f\left(x\right) = \frac{-5}{6}$$

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \frac{-(x-2)(x+3)}{(x-2)(x+4)}$$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} \frac{-(x+3)}{(x+4)}$$

$$\lim_{x \to 2^+} f(x) = \frac{-5}{6}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{-x^2}{x^2}$$

$$\lim_{x \to +\infty} f(x) = -1$$

2 بــ لدينا  $\lim_{x \to 2^-} f(x) \neq \lim_{x \to 2^+} f(x)$  اذن f متصلة في

-4 غير متصلة في ا $\lim_{x \to -4^-} f(x) \neq \lim_{x \to -4^+} f(x)$  لدينا

$$\lim_{x \to 2^{-}} g(x) = \lim_{x \to 2^{-}} x^2 - 1 = 3$$
 و  $g(2) = 3$  لاينا (2

$$\lim_{x \to 2^+} g(x) = \lim_{x \to 2^+} 2x + 1 = 5$$
 و

إذن g متصلة على اليسار في g و غير متصلة على اليمين g وبالتالي g غير متصلة في g.

$$D_f$$
 لنحدد  $D_f$  لنحدد  $D_f = \{x \in \mathbb{R} \, / \, x^2 + 2x - 8 \neq 0\}$  لدينا:  $x^2 + 2x - 8 = 0$  لنحل المعادلة  $\Delta = 36$  لدينا  $\Delta = 36$  نجد  $\Delta = 2$  و  $\Delta = 2$  نجد  $\Delta = 36$  إذن  $\Delta = 2$  النصل  $\Delta = 2$  أي أن  $\Delta = 2$  أي أن  $\Delta = 2$  عند محدات  $\Delta = 2$  عند محدات  $\Delta = 2$  أن عند محدات  $\Delta = 2$ 

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{-x^2}{x^2}$$

$$\lim_{x \to -\infty} f(x) = -1$$

$$\lim_{x \to -4^{-}} f(x) = \lim_{x \to -4^{-}} \frac{-(x-2)(x+3)}{(x-2)(x+4)}$$

$$\lim_{x \to -4^{-}} f(x) = \lim_{x \to -4^{-}} \frac{-(x+3)}{(x+4)}$$

$$\lim_{x \to -4^{-}} f(x) = \frac{1}{0^{-}}$$

$$\lim_{x \to -4^{-}} f(x) = -\infty$$

$$\lim_{x \to -4^{+}} f(x) = \lim_{x \to -4^{+}} \frac{-(x-2)(x+3)}{(x-2)(x+4)}$$

$$\lim_{x \to -4^+} f(x) = \lim_{x \to -4^+} \frac{-(x+3)}{(x+4)}$$

$$\lim_{x \to -4^{+}} f(x) = \frac{1}{0^{+}}$$

$$\lim_{x \to -4^+} f(x) = +\infty$$

## 2) الاتصال على مجال

#### تعريف

، [a,b] دالة عددية معرفة على مجال f

. ]a,b[ متصلة على كل نقطة من a,b[ ،إذا وفقط إذا كانت f متصلة في كل نقطة من a,b[

a تكون a متصلة على a ومتصلة على اليمين في a متصلة في كل نقطة من a ومتصلة على اليمين في a على اليسار في a .

#### ملاحظات

. ] $-\infty,b$ ] وعلى  $[a,+\infty[$  وعلى [a.b[ وعلى ]a,b وعلى  $[a,+\infty]$ 

\*التمثيل المبياني لدالة متصلة f على [a,b] هو منحنى متصل طرفاه النقطتين (a,f(a))و (a,f(b)).

#### خاصيات

 $\mathbb{R}$  دالة حدودية متصلة على  $\mathbb{R}$  .

\*كل دالة جدرية متصلة على كل مجال ضمن مجموعة تعريفها .

.  $\mathbb{R}^+$  الدالة  $x \to \sqrt{x}$  متصلة على

.  $\mathbb{R}$  دالة الجيب  $x 
ightarrow \sin x$  ودالة جيب تمام  $x 
ightarrow \cos x$  متصلة على

\*دالة الظلx o an x متصلة على كل مجال ضمن مجموعة تعريفها.

# 3) دالة الجزء الصحيح

. x عدد حقيقي x يوجد عدد نسبي وحيد n حيث x < n + 1 ، العدد الصحيح النسبي x يسمى الجزء الصحيح للعدد x

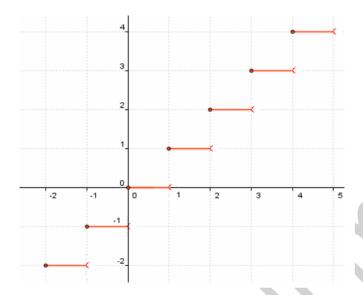


#### تعريف

دالة الجزء الصحيح هي الدالة التي تربط كل عنصر x من  $\mathbb R$  بجزئه الصحيح نرمز لصورة x بهذه الدالة بالرمز E(x) ولدينا:

 $E(x) = n \Leftrightarrow \exists ! n \in \mathbb{Z} \qquad n \le x < n+1$ 

# التمثيل المبياني لدالة الجزء الصحيح



#### نتائج

 $n \in \mathbb{Z}$  لكل

- . n دالة الجزء الصحيح متصلة على اليمين في n وغير متصلة على اليسار في
  - \* دالة الجزء الصحيح متصلة على [n, n+1].
    - \* دالة الجزء الصحيح غير متصلة في n.

# 4) قصور دالة عددية

#### تعريف

 $g\left(x
ight)=f\left(x
ight)$  إذا كانت f دالة عددية معرفة على المجال g و دالة عددية معرفة على المجال g و دالة عددية معرفة على المجال g فإننا نقول أن الدالة g قصور الدالة g على المجال g .

#### نتيجة

. J المجال g متصلة على المجال g و قصور الدالة f على المجال g متصلة على المجال g

#### مثال

: بمايلي يا دالة عددية معرفة على  $[-1,+\infty]$  بمايلي

. 
$$[-1,+\infty[$$
 لزيين أن الدالة  $f$  متصلة على المجال 
$$\begin{cases} f(x)=\sqrt{x} & x>1 \\ f(x)=\frac{3x^2}{x+2}; -1 \leq x \leq 1 \end{cases}$$

 $[1,+\infty]$  نعلم أن الدالة  $x\mapsto \sqrt{x}$  متصلة على  $\mathbb{R}^+$  و بالتالي متصلة على المجال

الدالة  $\frac{3x^2}{x+2}$  عبارة عن دالة جذرية إذن فهي متصلة على مجموعة تعريفها ومنه فإنها متصلة على المجال [-1,1] وبالتالى f متصلة على  $[-1,+\infty]$ 

# II. العمليات على الدوال المتصلة

# 1) خاصية (تقبل)

لتكن g و g دالتين عدديتين متصلتين على المجال g عدد حقيقي.

- . I و f imes g متصلة على f imes g و f imes g متصلة على \*
- . I المجال المجال I فإن الدالتين  $\frac{f}{g}$  و متصلتان على المجال g المجال g

# 2) اتصال مركبة دالتين خاصية

f الأداكانت f دالة عددية معرفة على المجال f و g دالة عددية معرفة على المجال f و g دالة متصلة على g فإن  $g \circ f$  فإن  $g \circ f$  متصلة على  $g \circ f$  دالة متصلة على  $g \circ f$  فإن المجال المجال و  $g \circ f$  دالة متصلة على المجال الم

#### تطبيق 2

$$f(x) = \sin\left(\frac{3}{x}\right)$$
 بالدالة العددية المعرفة ب

- $.D_f$  عدد .1
- .  $D_f$  على شكل مركبة دالتين ،ثم أدرس إتصال الدالة f على .2

# تصحيح التطبيق2

- $D_f=\mathbb{R}^*$  لدينا. 1
- $h(x) = \sin x$  و  $g(x) = \frac{3}{x}$  د نضع f(x) = h(g(x)) و .2

لدينا g دالة جذرية إذن فهي متصلة على مجموعة تعريفها  $(\mathbb{R}^*)$ . و h دالة متصلة على  $\mathbb{R}$  إذن فهي متصلة على  $\mathbb{R}^*$  و بالتالى f متصلة على  $\mathbb{R}^*$  .

## نتيجة

لتكن f دالة موجبة ومتصلة على مجال f ، f (I) = f والدالة f المعرفة بf متصلة على مجال f . f متصلة على مجال f متصلة على متصلة على مجال متصلة على مجال متصلة على مجال متصلة على مجال متصل ألم متصلة على مجال م

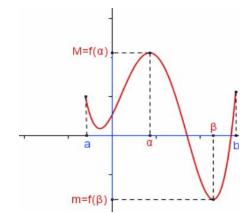
# III. صورة مجال بدالة عددية

#### 1) <u>صورة قطعة - صورة مجال</u> خاصية

صورة قطعة بدالة متصلة هي عبارة عن قطعة.

صورة مجال بدالة متصلة هي عبارة عن مجال.

#### ملاحظات



الذا كانت f متصلة على [a.b]فإنه يوجد  $\alpha$  من f من \*

$$M = f(\beta) = \sup_{x \in [a.b]} (f(x)) \mathfrak{d} m = f(\beta) = \inf_{x \in [a.b]} (f(x))$$

$$f([a,b]) = [m;M]$$
 ولدينا

. I اليس مجالا من  $\mathbb R$  فإن f غير متصلة على f

# 2) مبرهنة القيم الوسطية

f(c)=k دالة متصلة على a و a عدد حقيقي بحيث b=a . يوجد على الأقل عدد a محصور بين a و a حيث a

#### خاصية

إذا كانت f دالة متصلة على I و a و a عنصرين منه فإن لكل عدد a محصور بين a و a يوجد على الأقل عدد a محصور بين a و a حيث a عنصرين منه فإن لكل عدد a محصور بين a و a حيث a عنصرين عدد a

#### نتيجة

. ]a,b[ في الأقل حلا في f(a)=0 وكان f(a)=0 فإن المعادلة f(a)=0 الأقل حلا في إذا كانت f(a)=0

#### تطبيق3

$$I = \left[rac{\pi}{2}, \pi
ight]$$
بين أن المعادلة  $2\sin x = x$  تقبل على الأقل حلا في المجال

$$f(x) = 2\sin x - x$$
 خضع:

$$2\sin x - x = 0$$
 تكافئ

$$2\sin x = x$$
 لدينا

I لدينا  $f(\pi/2)$  لدينا  $f(\pi/2)$  لدينا ولدينا الأقل حلا في الأقل حلا في الأقل الدينا ولدينا الأقل ا

# 3) صورة مجال بدالة متصلة ورتسة قطعا

| الدالة $f$ متصلة وتناقصية قطعا                       |               | الدالة $f$ متصلة وتزايدية قطعا                             |               |
|------------------------------------------------------|---------------|------------------------------------------------------------|---------------|
| صورته                                                | المجال        | صورته                                                      | المجال        |
| [f(b),f(a)]                                          | [a,b]         | $\Big[f\big(a\big),f\big(b\big)\Big]$                      | [a,b]         |
| $\lim_{x \to b^+} f(x), f(a)$                        | [a,b[         | $\left[ f(a), \lim_{x \to b^{-}} f(x) \right[$             | [a,b[         |
| $\left[f(b), \lim_{x \to a^+} f(x)\right]$           | ]a,b]         | $\left[\lim_{x\to a^+}f(x),f(b)\right]$                    | ]a,b]         |
| $\lim_{x\to+\infty}f(x),f(a)$                        | $[a,+\infty[$ | $\left[ f(a), \lim_{x \to +\infty} f(x) \right]$           | $[a,+\infty[$ |
| $\lim_{x \to b^{-}} f(x), \lim_{x \to a^{+}} f(x)$   | ]a,b[         | $\lim_{x \to a^{+}} f(x), \lim_{x \to b^{-}} f(x)$         | ]a,b[         |
| $\lim_{x \to a^{-}} f(x), \lim_{x \to -\infty} f(x)$ | ]-∞, a[       | $\lim_{x \to -\infty} f(x), \lim_{x \to a^{-}} f(x) \Big[$ | $]-\infty,a[$ |

## نتيجة 1

وخاكانت f دالة متصلة ورتيبة قطعا على [a,b]فإن لكل عدد k محصور بين f(a) و f(a) يوجد عدد وحيد محصور إذا كانت f(c)=k بين a و b حيث

#### نتيجة2

a,b[ فإن المعادلة f(x)=0 تقبل حلا وحيدا في f(a).f(b)<0 وكان f(a).f(b)<0 فإن المعادلة ورتيبة قطعا على

# IV. الدالة العكسية لدالة متصلة ورتيبة قطعا على مجال

1) الدالة العكسية

#### خاصية

إذا كانت f دالة متصلة ورتيبة قطعا على مجال I فإن لكل y من I المعادلة  $f\left(x
ight)=y$  تقبل حلا وحيدا في I (نعبر عن (f(I)) هذا بقولنا f تقابل من

#### تعريف

لتكن f دالة متصلة ورتيبة قطعا على مجال I و J مجال حيث  $f\left(I
ight)=J$  ،الدالة التي تربط كل عنصر y بالعنصر الوحيد .  $f^{-1}$ من f نرمز لها بالرمز f تسمى الدالة العكسية للدالة f نرمز لها بالرمز x

#### نتائج

لتكن f دالة متصلة ورتيبة قطعا على مجال I و  $f^{-1}$  دالتها العكسية لدينا

- $\forall y \in f(I), \exists ! x \in I \qquad f^{-1}(y) = x \Leftrightarrow y = f(x)$ 
  - $\forall x \in I \qquad (f^{-1} \circ f)(x) = x$
  - $\forall y \in f(I) \quad (f \circ f^{-1})(y) = y$

2 خاصيات الدالة العكسية إذا كانت f دالتها العكسية فإن f دالتها العكسية فإن f

- . f(I) متصلة على  $f^{-1}$
- . I رتیبهٔ قطعا علی  $f\left(I\right)$  ولها نفس رتابهٔ f علی المجال  $f^{-1}$
- . منظم معامد معامد ي y=x منحنى الدالة  $t_f$  هو مماثل المنحنى بالنسبة للمستقيم الذي معادلته  $t_f$

#### تطبيق4

$$f(x) = \frac{x+1}{x-1}$$
: نعتبر الدالة  $f(x) = \frac{x+1}{x-1}$ 

- .  $D_f$  عدد .1
- $I = [1, +\infty]$  بين أن f متصلة ورتيبة قطعا على المجال .2

 $D_f = \mathbb{R} \setminus \{1\}$ 

.3 بين أن f تقبل دالة عكسية معرفة على مجال J يتم تحديده.

-2 الدالة f عبارة عن دالة جذرية معرفة على المجال

. J من  $\chi$  لكل  $f^{-1}$  عدد .4

## تصحيح التطبيق 4

$$[1,+\infty[$$
 المجال  $]1,+\infty[$  المجال  $]1,+\infty[$  النائي  $]1,+\infty[$  تقاصية قطعا على  $]1,+\infty[$  النائي  $]1,+\infty[$  النائي  $]1,+\infty[$  النائي  $]1,+\infty[$  النائي  $]1,+\infty[$  النائي معرفة على المجال  $]1,+\infty[$  المجال  $]1,+\infty[$   $]1,$ 

$$\begin{aligned}
& [1,+\infty[ \ \, \text{with also } f \ \, \text{with } ]1,+\infty[ \\
& [ \ \, \text{lumin} \ \, ]1,+\infty[ \ \, \text{with } ]1,+\infty[ \ \, \text{lumin} ]2,+\infty[ \ \,$$

# 3) <u>دالة الجذر من الرتبة n</u> أ - تعريف دالة الجذر من الرتبة n

نعلم أن الدالة  $x \mapsto x \mapsto x$  بحيث n عدد صحيح طبيعي غير منعدم دالة متصلة وتزايدية قطعا على  $\mathbb{R}^+$  إذن تقبل دالة عكسية. تعريف

الدالة العكسية للدالة  $x\mapsto x^n$  بحيث  $x\mapsto x$  عدد صحيح طبيعي غير منعدم تسمى دالة الجذر من الرتبة  $x\mapsto x^n$  نرمز لها ب  $x\mapsto x^n$  العدد الحقيقى x يقرأ جذر من الرتبة x وهو صورة x بالدالة x .

أمثلة

ليكن x عدد حقيقي موجب.

- $\sqrt[1]{x} = x$  •
- x جذر مربع للعدد  $\sqrt{x} = \sqrt{x}$ 
  - . x جذر مكعب للعدد •

## خاصية

- .  $\lim_{n\to\infty} \sqrt[n]{x}$  و  $\mathbb{R}^+$  بحیث n عدد صحیح طبیعی غیر منعدم متصلة علی  $x\mapsto \sqrt[n]{x}$ 
  - منحنى الدالة  $x\mapsto \sqrt[n]{x}$  مماثل لمنحنى الدالة  $x\mapsto x\mapsto x$  بالنسبة للمنصف الأول للمعلم.

## نتائج

ليكن عدد صحيح طبيعي لدينا مايلي:

$$\forall (x,y) \in \mathbb{R}^{+2} \quad \sqrt[n]{x^n} = \left(\sqrt[n]{x}\right)^n = x$$

$$\forall (x,y) \in \mathbb{R}^{+2} \quad \sqrt[n]{x} = \sqrt[n]{y} \Leftrightarrow x = y$$

$$\forall (x, y) \in \mathbb{R}^{+2} \quad \sqrt[n]{x} < \sqrt[n]{y} \Leftrightarrow x < y$$

#### أمثلة

لدينا

و 
$$0=\sqrt[n]{0}$$
 بحیث عدد صحیح طبیعی غیر منعدم  $\sqrt[n]{0}$ 

$$\sqrt[3]{27} = \sqrt[3]{3^3} = 3$$

$$\sqrt[5]{32} = \sqrt[5]{2^5} = 2$$

# ب العمليات على الجذور

لیکن p و a عددین صحیحین طبیعیین غیر منعدمین و a و معددین حقیقیین موجبین.

$$\sqrt[n]{a} = \sqrt[np]{a^p}$$

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}} \qquad b \neq 0 \qquad \bullet$$

$$\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{ab}$$

$$\sqrt[n]{\sqrt[p]{a}} = \sqrt[np]{a} \qquad \bullet$$

# ج - اتصال ونهاية مركبة دالة ودالة الجذر من الرتبة خاصدات

$$I$$
 دالة موجبة على مجال  $I$  و  $x_0$  عنصرا من  $f$ 

- . I متصلة على الميان متصلة على الميان متصلة على f
- .  $\lim_{x \to x_0} \sqrt[n]{f(x)} = \sqrt[n]{l}$  فإن  $\lim_{x \to x_0} f(x) = l$  وذا كانت  $\lim_{x \to x_0} \sqrt[n]{f(x)}$
- .  $\lim_{x \to x_0} \sqrt[n]{f(x)} = +\infty$  فإن  $\lim_{x \to x_0} f(x) = +\infty$  إذا كانت  $+\infty$

ملاحظة: الخاصيتان الأخيرتان صحيحتان إذا كان يؤول إلى أو على اليمين أو على اليسار.

1-حل في المعادلات التالية:

$$x^{3} + 7 = 0 \quad \text{if} \quad x^{6} - 3 = 0$$
$$\sqrt[3]{(3+x)^{2}} + \sqrt[3]{(3-x)^{2}} = 2\sqrt[3]{9-x^{2}}$$

$$\lim_{x \to +\infty} x - \sqrt[3]{x^3 + x^2}$$

$$\lim_{x \to +\infty} x - \sqrt[3]{x^3 + x^2} \qquad \qquad \text{$"$} \qquad \lim_{x \to 1^+} \frac{\sqrt{x^2 - 1}}{\sqrt[3]{x - 1}} \qquad \text{$"$}$$

$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt[3]{x + 63} - 4}$$

$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt[3]{x + 63} - 4} \quad \text{"} \quad \lim_{x \to 0} \frac{\sqrt[3]{x + 8} - 2}{x}$$

$$\lim_{x \to 0} \frac{\sqrt[3]{x+8} - 2}{x} = \lim_{x \to 0} \frac{\left(\sqrt[3]{x+8}\right)^3 - 2^3}{x \left[\left(\sqrt[3]{x+8}\right)^2 + 2\sqrt[3]{x+8} + 4\right]}$$

$$\lim_{x \to 0} \frac{\sqrt[3]{x+8} - 2}{x} = \lim_{x \to 0} \frac{x}{x \left[ \left( \sqrt[3]{x+8} \right)^2 + 2\sqrt[3]{x+8} + 4 \right]}$$

$$\lim_{x \to 0} \frac{\sqrt[3]{x+8} - 2}{x} = \lim_{x \to 0} \frac{1}{\left(\sqrt[3]{x+8}\right)^2 + 2\sqrt[3]{x+8} + 4}$$

$$\lim_{x \to 0} \frac{\sqrt[3]{x+8} - 2}{x} = \frac{1}{12}$$

$$\lim_{x \to 1} \frac{\sqrt[3]{x - 1}}{\sqrt[3]{x + 63} - 4} = \lim_{x \to 1} \frac{x - 1}{x + 63 - 64} \times \frac{\left(\sqrt[3]{x + 63}\right)^2 + 4\sqrt[3]{x + 63} + 16}{\left(\sqrt[3]{x}\right)^2 + \sqrt[3]{x + 1}}$$

$$\lim_{x \to 1} \frac{\sqrt[3]{x - 1}}{\sqrt[3]{x + 63} - 4} = \lim_{x \to 1} \frac{\left(\sqrt[3]{x + 63}\right)^2 + 4\sqrt[3]{x + 63} + 16}{\left(\sqrt[3]{x}\right)^2 + \sqrt[3]{x} + 1}$$

$$\lim_{x \to 1} \frac{\sqrt[3]{x - 1}}{\sqrt[3]{x + 63} - 4} = 16$$

$$\Leftrightarrow x^6 - 3 = 0$$

$$\Leftrightarrow x^6 = 3$$

$$\Leftrightarrow x = \sqrt[9]{3}$$

$$\Leftrightarrow x^3 + 7 = 0$$

$$\Leftrightarrow x^3 = -7$$

$$\Leftrightarrow (-x)^3 = 7$$

$$\Leftrightarrow -x = \sqrt[3]{7}$$

$$\Leftrightarrow x = -\sqrt[3]{7}$$

$$S_2 = \left\{ -\sqrt[3]{7} \right\}$$

\*لدينا

$$\Leftrightarrow \sqrt[3]{(3+x)^2} + \sqrt[3]{(3-x)^2} = 2\sqrt[3]{9-x^2}$$

$$\Leftrightarrow \sqrt[3]{(3+x)^2} + \sqrt[3]{(3-x)^2} - 2\sqrt[3]{9-x^2} = 0$$

$$\Leftrightarrow \left(\sqrt[3]{(3+x)}\right)^2 + \left(\sqrt[3]{(3-x)}\right)^2 - 2\sqrt[3]{3-x}\sqrt[3]{3+x} = 0$$

$$\Leftrightarrow \left(\sqrt[3]{3+x} - \sqrt[3]{3-x}\right)^2 = 0$$

$$\Leftrightarrow \sqrt[3]{3+x} = \sqrt[3]{3-x}$$

$$\Leftrightarrow$$
 3 +  $x$  = 3 -  $x$ 

$$\Leftrightarrow x = 0$$

$$S_2 = \{0\}$$
 إذن

# 4) <u>القوة الجذرية لعدد حقيقي موجب</u> تعريف

.  $(p,q) \in \mathbb{N}^{*2}$  مع  $r = \frac{p}{q}$  معدد حقیقی موجب قطعا و r عددا جذریا غیر منعدم حیث

 $x^{rac{p}{q}}=\sqrt[q]{x^p}$  القوة الجذرية للعدد الحقيقي  $x^r$  في العدد العدد العقيقي العدد ال

أمثلة

خاصيات

لیکن r و r عددین جذریین و a و b عددین حقیقین موجبین قطعا لدینا مایلي:

$$a^{r}a^{r'} = a^{r+r'}$$
 !!  $a^{r}b^{r} = (ab)^{r}$  !!  $(a^{r})^{r'} = a^{rr'}$ 

$$\frac{1}{a^r} = a^{-r} \qquad \qquad \text{$!$} \qquad \qquad \frac{a^r}{b^r} = \left(\frac{a}{b}\right)^r \quad \text{$!$} \qquad \frac{a^r}{a^{r'}} = a^{r-r'} \quad \blacklozenge$$

# لتفرع الثنائي

هناك بعض المعادلات من نوع f(x) = 0 لايمكن حلها جبريا لكن يمكن تحديد قيمة مقربة لحل هذه المعادلة وذلك بإستعمال طريقة التفرع الثنائى .

لتكن f دالة متصلة و رتيبة قطعا على [a,b] و [a,b] و f(a) إذن يوجد عدد وحيد  $\alpha$  حل للمعادلة [a,b] في المجال [a,b].

$$\frac{b-a}{2}$$
 وهذا تأطير اللعدد  $\lambda$  سعته  $\frac{a+b}{2} < \lambda < b$  فإن  $f(a)f(\frac{a+b}{2}) > 0$  إذا كان

 $\frac{b-a}{4}$  نعید هذه العملیة بتعویض  $\frac{a+b}{2}$  ب  $\frac{a+b}{2}$  ب علی تأطیر سعته

$$\frac{b-a}{2}$$
 إذا كان  $0 < \lambda < \frac{a+b}{2}$  فإن  $f\left(a\right)f\left(\frac{a+b}{2}\right) < 0$  وهذا تأطيرا للعدد سعته  $\star$ 

 $\frac{b-a}{4}$ نعید هذه العملیة بتعویض  $\frac{a+b}{2}$  ب  $\frac{a+b}{2}$  ب نعید هذه العملیة بتعویض

# نعيد هذه العملية ككل إلى أن نحصل على التأطير المرغوب فيه

تطبيق6

بين أن المعادلة 
$$x^3+1=-x$$
 تقبل حلا وحيدا  $\lambda$  في المجال  $-1, \frac{-1}{2}$  ثم حدد تأطيرا للعدد  $\lambda$  سعته  $\frac{1}{8}$ .