- $-2-2i\sqrt{3}$ حدد الجذرين المربعين للعدد العقدي $-2-2i\sqrt{3}$
- $(z \in \mathbb{C})$ $z^2 (3 + i\sqrt{3})z + 2(1 + i\sqrt{3}) = 0$: حل المعادلة (E) حل المعادلة
 - . (E) عيث z_1 و z_2 هما حلا المعادلة $u=(\overline{z}_1)^2+(\overline{z}_2)^2$ نضع $u=(\overline{z}_1)^2+(\overline{z}_2)^2$
 - . $u=2-2i\sqrt{3}$ من أن $u=2-2i\sqrt{3}$ ثم اعط الشكل المثلثي للعدد
 - ب-) اثبت أن u²⁰⁰¹ عدد حقيقي سالب .
- $(0,\vec{e}_1,\vec{e}_2)$ نعتبر في المستوى العقدي المنسوب إلى معلم متعامد ممنظم مباشر $(0,\vec{e}_1,\vec{e}_2)$ ، النقط A و B و C صور الأعداد العقدية C و B و A على التوالى .
 - بين أن المثلث ABC متساوي الأضلاع.