$$-2 \prec u_0 \prec -1:$$
 من جهة لدينا $-2 \prec u_0 \prec -1:$ من جهة ثانية إذا كان $-2 \prec u_n \prec -1:$ فإن $-2 \prec u_n \prec -1:$ يعني أن $-2 \prec u_n + 2:$ $-2 \prec u_n + 2:$ $-2 \prec u_n + 2:$ $-2 \prec u_n + 2:$ أي أن $-2 \prec u_{n+1} \prec -1:$ أي أن $-2 \prec u_{n+1} \prec -1:$ وبالتالي لكل $-2 \prec u_n \prec -1:$ لدينا $-2 \prec u_n \prec -1:$

ب-) لكل
$$n$$
 من \mathbb{N} لدينا : $u_{n+1}-u_n=u_n^2+4u_n+4-2-u_n$
$$=u_n^2+3u_n+2$$
 لندرس إشارة الحدودية x^2+3x+2 فنحصل على النتيجة التالية:

$-\infty$	-2		-1	+∞
+	ф	-	0	+
	- ∞	-∞ -2 + ()	-∞ -2 + () -	$ \begin{array}{c ccccc} -\infty & -2 & -1 \\ + & \emptyset & - & \emptyset \end{array} $

2- لدينا المتتالية (u_n) تناقصية ومصغورة بالعدد 2- إذن فهي متقاربة.

$$\ell \in \mathbb{R}$$
 نضع: $\ell = \lim u$ نضع

 \mathbb{N} بما أن $u_{n+1} = (2+u_n)^2 - 2$ بما أن

$$\ell = (2+\ell)^2 - 2$$
 : فإن ℓ تحقق المعادلة

$$\ell = (2+\ell)^2 - 2 \Leftrightarrow \ell^2 + 3\ell + 2 = 0$$
: لدينا

$$\Leftrightarrow \ell = -1$$
 أو $\ell = -2$

وبما أن
$$(u_n)$$
 تناقصية) $-2 \prec u_n \prec u_0 = -\frac{5}{4}$ وبما أن

$$-2 \le \ell \le -\frac{5}{4}$$
 فإن

$$(-1 \succ -\frac{5}{4}$$
 يعني أن $\ell \neq -1$ $\ell \neq -1$

$$\ell=-2$$
: أي أن

$$\lim u_{\pi} = -2$$