Г							
• 1	N° de table	Nom:		Ne rien écri	re dans ces cases		
		Prénom:		Note/20	Code		
		CNE:					
		N° de Tél :					
L			nysique (durée 1 heure)		***		
Ne rien écrire dans cette partie, réservée à l'administration							
		Ne r	ien écrire dans cette case. (Code)				
	Mettre une croix sur la Réponse juste =1 point	Réponse fai		ucune réponso	e = 0 point		
Calculatrice autorisée, documents non autorisés							
1) Un point matériel, avec une accélération égale à 0.4 m/s² parcourt un segment AB de 10 m de longueur. Il part de A avec une vitesse égal e à 1m/s. La durée t du mouvement est : A t = 50 s B t = 10 s C t = 5 s							
		M a un mouvement d'ée	quation horaire $z = 2 + \sin(-100)$	Oπt). Le point M	M oscille autour		
	du point d'abscisse : A $z = -100$		\mathbf{B} $\mathbf{z} = 2$	C	z = 3,14		
	3) Le même point M A a= 1mm	que celui de la question	(2), son amplitude est: B a = 10 mm	C	a = 2 m		
	4) Le même point M que celui de la question (2), sa période est : A $T = 2 s$ B $T = 2.10^{-2} s$ C $T = 2.10^{-2} s$						
	5) Le même point M que celui de la question (2), sa vitesse maximale est : A V=3,14mm/s B V=314m/s C V=0,314						
6) L'énergie cinétique d'un objet de masse $m = 1$ Kg ayant une vitesse $v = 4$ m/s est : $A = 8$ J $B = 2$ J;					E = 8 kJ		
	7) Une particule de charge q animée d'une vitesse $ec{V}$ et placée dans un champ magnétique $ec{R}$						
	direction perpendiculaire à \vec{V} , est soumise à u $\boxed{A}F=\pi~q~V~B$		une force de module : $B = q V B$				
	8) Le module de la force de freinage qu'il faut déployer pour stopper sur une distance de 300 m un camion de masse $M=10$ tonnes, roulant à la vitesse de 100 km/h est : $ \boxed{A} F = 1,28 \ 10^4 \text{ N} $						
		nent de son centre de gra	nt sur un plan horizontal parfa avité est : B Rectiligne uniforme		Circulaire		

Ne rien écrire

10) Une voiture de masse $M = 800$ kg se déplace sur une route rectiligne et horizontale. Sous l'effet d'une force de traction $F = 960$ N, dans laquelle on inclut les frottements, est partie du repos, elle atteint une vitesse de 64,8 km/h en 15 secondes. Le travail de la force \vec{F} durant la phase d'accélération est :							
une vitesse de 64,8 km/h en 15 seconde $ A W \cong 1,3 \text{ 1O}^5 \text{ J} $	is. Le travail de la force F durant la pl $ B W \cong 13 \text{ kJ} $	nase d'accélération est : C W = - 10 ⁵ J					
rectiligne uniforme. Sachant que l'ense	11) La voiture de l'exercice (10) ayant atteint la vitesse de 64.8 km/h, roule ensuite avec un mouvement rectiligne uniforme. Sachant que l'ensemble des forces de frottement est équivalent à une force unique opposée au sens de la vitesse et dont l'intensité moyenne est 450 N, la puissance fournie par le moteur est :						
$\stackrel{\text{CS}}{[A]}$ P = 81 watts	$\boxed{\text{B}} \text{ P} = 8100 \text{ watts}$	C P = 10 ³ watts					
12) Un plateau tourne avec une fréquen La vitesse linéaire d'un point situé à 0.5 A V = 1,7 cm/s		C V = 0,15 cm/s					
sont:							
A De directions quelconques	B Perpendiculaires	C Colinéaires					
14) La puissance instantanée de la force circulaire uniforme est :	14) La puissance instantanée de la force centripète appliquée à un point matériel animé d'un mouvement circulaire uniforme est						
A 10 fois la force	B 10 fois la vitesse	C Nulle					
15) Une lentille mince convergente don que l'objet, située à la distance d = 32 cr A f' = 6 cm	15) Une lentille mince convergente donne d'un objet AB réel, une image A'B', réelle 3 fois plus grande que l'objet, située à la distance d = 32 cm de cet objet. La distance focale image de cette lentille est : A] f' = 6 cm B] f' = 32/3 cm C] f' = 16 cm						
16) L'intensité du courant électrique passant par une résistance de 15Ω branchée sur une source de tension est de $2 A$. Si on branche en série une résistance de 3Ω avec la première, l'intensité du courant électrique sera :							
$\boxed{A} I = 5/3 A$	B I = 10/3 A	CI = 10 A					
17) Une prise maintient entre ses borne tension est :	17) Une prise maintient entre ses bornes une tension $u = 141,4 \sin(100\pi t)$ volts. La fréquence de cette						
\boxed{A} N = 100 Hz	$\boxed{\text{B}} \text{ N} = 50 \text{ Hz}$	C N = 10 Hz					
18) On branche entre les bornes de la prise de l'exercice (17) une résistance pure R, l'intensité efficace qui traverse R est 5A. La résistance R est :							
$\boxed{\mathbf{A}} \mathbf{R} = 10 \ \Omega$	$\boxed{B} R = 10^2 \Omega$	$C R = 20 \Omega$					
19) Une bobine est soumise à une tension constante $U_1 = 20 \text{ V}$, l'intensité du courant est alors $I_1 = 2.5 \text{ A}$. Ensuite on lui applique une tension sinusoïdale, de valeur efficace $U_2 = 17.8 \text{ V}$, de fréquence 50 Hz, l'intensité efficace est alors $I_2 = 2 \text{ A}$. L'inductance de cette bobine est :							
$A L = 1,24. 10^{-2} H$	B L = 12,4 H	C L = 1,24 H					
20) Pour la même bobine que celle de l'exercice (19), le déphasage φ du courant par rapport à la tension est :							
$\boxed{A} \phi = \pi/4 \text{ rad}$	$\boxed{\mathrm{B}} \phi = 26^{\circ}$	\boxed{C} $\phi = 90^{\circ}$					
		2/2					