Matière : Physique Sciences Expérimentales et Branches Techniques

Partie QCM: 1h30mn

<u>Important</u>: Cette épreuve est un Q.C.M (questions à choix multiples). Veuillez cocher Les réponses exactes dans la fiche de réponse ci-jointe.

On prendra g=10m/s².

On donne g=10m/s ²			
1- Un projectile est lancé	à l'instant t=0 depuis la surf	ace de la terre avec une vite	esse verticale de50m/s.
	s'élèvera-t-il si on néglige le		
a) 60m	b) 125m	c) 80m	d) 100m
1.2 A quel instant le proje	ectile atteint-t-il cette hauteur	?	,
a) 10s	b)2,5s	c) 15s	d) 5s
qu'il accélère de manière qu'il accélère de manière qu'il vitesse constante pour la f 2.1 Quelle est la valeur du	nodule de son accélération	miers mètres et maintient en au démarrage?	nsuite une
a) $3,22 \text{ m/s}^2$	b) $2,25 \text{ m/s}^2$		d) $4,73 \text{ m/s}^2$
2.2 Quelle est la durée de	la première phase du mouve	ment ? (Phase du mouveme	nt accéléré).
a) 6,666s	b) 7,777s	c) 4,444s	d) 3,333s
2.3 Quelle est la vitesse d	lu coureur au cours de la deu	xième phase? (Phase du mo	ouvement uniforme)
a) 20m/s	b) 25m/s	c) 5m/s	d) 15m/s

3- On considère le chemin ci-dessous, constitué d'une portion rectiligne inclinée et d'une circonférence de diamètre **OA=D**. On lâche, sans vitesse initiale, une bille ponctuelle de masse m à partir d'une hauteur h mesurée par rapport au plan horizontal passant par O. On néglige les frottements.

3.1 Quelle est la valeur minimale qu'il faut attribuer à h pour que la bille puisse atteindre le point A?

a) D

b) 2D

c) 1,5D

d) 2.5D

Dans la suite de cet exercice on suppose que h=2D. La bille est toujours lâchée sans vitesse initiale.

3.2 Quelle est l'expression de l'énergie mécanique de la bille ? On prend comme référence de l'énergie potentielle de pesanteur le plan horizontal passant par O.

a) m.g.I

b) 2m.g.D

c) 0,5m.g.D

d) 1,5m.g.D

3.3 Quelle est la vitesse de la bille en O?

a) $\sqrt{2gD}$

b) 2 \sqrt{gD}

c) 1,5 \sqrt{gD}

d) \sqrt{gD}

3.4 Quelle est la vitesse de la bille en A?

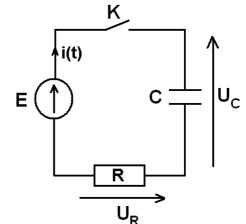
a) 1,5 \sqrt{gD}

b) 2 \sqrt{gD}

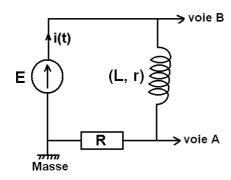
c) $3\sqrt{gD}$

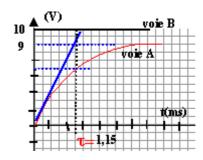
d) $\sqrt{2gD}$

3.5 Quelle est l'expression de la réaction F exercée sur la bille en O?


a) m.g

b) 3m.g


c) 6m.g


d) 9m.g

4- Un condensateur de capacité C=1 μF initialement déchargé est placé en série avec un conducteur ohmique R=10 kΩ. L'nesemble est alimenté par une source de tension continue parfaite E=5 V. A l'instant t=0, on ferme l'interrupteur K (figure ci-contre).

- **4.1** Parmi les phrases suivantes, choisir celle qui est correcte :
- a) La tension aux bornes du condensateur est d'autant plus petite que la valeur absolue de la charge portée par ses armatures est grande.
- b) L'équation différentielle de la charge q du condensateur admet cette expression : $RC\frac{dq}{dt}+q=E$.
- c) Le milieu qui se trouve entre les deux armatures d'un condensateur est un isolant.
- d) La capacité d'un condensateur peut être positive ou négative.
- **4.2** Quel est le temps nécessaire pour que la charge du condensateur atteint 63 % de sa valeur maximale ?
- a) 1 ms
- b) 10 ms.
- c) 100 ms.
- d) 1000 ms.
- 4.3 L'énergie maximale emmagasinée par le condensateur est égal à :
- a) 12,5 μ J.
- b) 12,5 J.
- c) 1,25 mJ.
- d) 12,5 mJ.
- **4.4** On cherche à remplacer le condensateur de capacité C=1 μF par un condensateur équivalent constitué de deux condensateurs, de capacités C_1 et C_2 , montés en série. Les valeurs possibles de C_1 et C_2 sont :
- a) $(0.5 \mu F, 0.5 \mu F)$.
- b) (2 μF, 1 μF).
- c) (1 µF, 1 µF).
- d) $(2 \mu F, 2\mu F)$.
- 5- On branche en série, aux bornes d'un générateur idéal de tension continue E = 10 V, une bobine d'inductance L et de résistance r et un conducteur ohmique $R = 270 \Omega$. Un oscilloscope à mémoire permet d'enregistrer les tensions des voies A et B. La constante du temps τ du circuit a pour valeur 1,15 ms. (voir figures ci-dessous)

- **5.1.** Parmi les phrases suivantes, choisir celle qui est correcte :
- a) Une bobine s'oppose aux variations d'une tension dans un circuit.
- b) L'amplitude de la tension imposée aux bornes du dipôle (R,L) n'a aucune influence sur la constante de temps du circuit.
- c) La tension visualisée voie A sur l'oscilloscope est la tension aux bornes de la bobine.
- d) L'énergie emmagasinée dans une bobine est proportionnelle à la racine carrée de la valeur du courant i qui la traverse.
- **5.2** L'intensité du courant i(t) qui circule dans le circuit en régime permanent $(t \to \infty)$ est égale à :
- a) 0.3 mA.
- b) 3.33 mA.
- c) 33,3 mA.
- d) 333,3 mA.

- **5.3** La résistance r de la bobine vaut :
- a) 10 Ω.
- b) 17 Ω.
- c) 30 Ω.
- d) 47 Ω.

- **5.4** Quelle est la valeur de l'inductance L de la bobine ?
- a) 345 mH.
- b) 435 mH.
- c) 534 mH.
- d) 543 mH.